Parsimonious Estimation with Many Instruments
نویسندگان
چکیده
We suggest a way to perform parsimonious instrumental variables estimation in the presence of many, and potentially weak, instruments. In contrast to standard methods, our approach yields consistent estimates when the set of instrumental variables complies with a factor structure. In this sense, our method is equivalent to instrumental variables estimation that is based on principal components. However, even if the factor structure is weak or nonexistent, our method, unlike the principal components approach, still yields consistent estimates. Indeed, simulations indicate that our approach always dominates standard instrumental variables estimation, regardless of whether the factor relationship underlying the set of instruments is strong, weak, or absent.
منابع مشابه
A Shrinkage Instrumental Variable Estimator for Large Datasets
This paper proposes and discusses an instrumental variable estimator that can be of particular relevance when many instruments are available. Intuition and recent work (see, e.g., Hahn (2002)) suggest that parsimonious devices used in the construction of the final instruments, may provide effective estimation strategies. Shrinkage is a well known approach that promotes parsimony. We consider a ...
متن کاملDirichlet Process Parsimonious Mixtures for clustering
The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estimation and has also been considered from a parametric Bayesian prospective. We propose new Dirichlet Process Parsimonious mixtur...
متن کاملAbsorbed dose to peripheral organs during different methods of dental radiology using radiation estimation models
Introduction: Dental radiography as one of the most frequent type of radiological examinations is accepted for medical investigations due to their significant benefits nevertheless using ionizing radiation. It has lower radiation dose compared to another radiological examination but because of its high application for children, radiation dose needs attention. Based on affectin...
متن کاملAn Optimal Modification of the LIML Estimation for Many Instruments and Persistent Heteroscedasticity
We consider the estimation of coefficients of a structural equation with many instrumental variables in a simultaneous equation system. It is mathematically equivalent to an estimating equation estimation or a reduced rank regression in the statistical linear models when the number of restrictions or the dimension increases with the sample size. As a semi-parametric method, we propose a class o...
متن کاملFactor-GMM estimation with large sets of possibly weak instruments
This paper analyses the use of factor analysis for instrumental variable estimation when the number of instruments tends to infinity. We consider cases where the unobserved factors are the optimal instruments but also cases where the factors are not necessarily the optimal instruments but can provide a summary of a large set of instruments. Further, the situation where many weak instruments exi...
متن کامل